给定一个(虚拟)向量
index=log(seq(10,20,by=0.5))
我想用居中的窗口和在每个末端都有锥形窗口来计算运行平均值,即第一个条目保持不变,第二个是窗口大小为 3 的平均值,依此类推,直到达到指定的窗口大小。
这里给出的答案:Calculating moving average,似乎都会产生一个较短的向量,在窗口太大的地方切断开始和结束,例如:
ma <- function(x,n=5){filter(x,rep(1/n,n), sides=2)}
ma(index)
Time Series:
Start = 1
End = 21
Frequency = 1
[1] NA NA 2.395822 2.440451 2.483165 2.524124 2.563466 2.601315
[9] 2.637779 2.672957 2.706937 2.739798 2.771611 2.802441 2.832347 2.861383
[17] 2.889599 2.917039 2.943746 NA NA
同样的道理
rollmean(index,5)
来自动物园的包裹
有没有一种快速的方法来实现锥形窗口而不诉诸于编码循环?
8
由于rollapply
可能相当慢,因此通常值得编写一个简单的定制函数...
tapermean <- function(x, width=5){
taper <- pmin(width,
2*(seq_along(x))-1,
2*rev(seq_along(x))-1) #set taper pattern
lower <- seq_along(x)-(taper-1)/2 #lower index for each mean
upper <- lower+taper #upper index for each mean
x <- c(0, um(x)) #sum x once
return((x[upper]-x[lower])/taper)} #return means
这比rollapply
解决方案快 200 倍...
library(microbenchmark)
index <- log(seq(10,200,by=0.5)) #longer version for testing
w <- c(seq(1,5,2),rep(5,length(index)-5-1),seq(5,1,-2)) #as in Scarabees answer
microbenchmark(tapermean(index),
rollapply(index,w,mean))
Unit: microseconds
expr min lq mean median uq max neval
tapermean(index) 185.562 193.9405 246.4123 210.6965 284.548 590.197 100
rollapply(index,w,mean) 48213.027 49681.0715 52053.7352 50583.4320 51756.378 97187.538 100
我休息我的案子!
6
zoo::rollapply
的width
参数可以是数值向量。
因此,在你的例子中,你可以使用:
rollapply(index, c(1, 3, 5, rep(5, 15), 5, 3, 1), mean)
# [1] 2.302585 2.350619 2.395822 2.440451 2.483165 2.524124 2.563466 2.601315 2.637779 2.672957 2.706937 2.739798 2.771611 2.802441 2.832347 2.861383
# [17] 2.889599 2.917039 2.943746 2.970195 2.995732
如果n
是一个奇数,一般的解决方案是:
w <- c(seq(1, n, 2), rep(n, length(index) - n - 1), seq(n, 1, -2))
rollapply(index, w, mean)
编辑:如果您关心性能,则可以使用自定义 Rcpp 函数:
library(Rcpp)
cppFunction("NumericVector fasttapermean(NumericVector x, const int window = 5) {
const int n = x.size();
NumericVector y(n);
double s = x[0];
int w = 1;
for (int i = 0; i < n; i++) {
y[i] = s/w;
if (i < window/2) {
s += x[i + (w+1)/2] + x[i + (w+3)/2];
w += 2;
} else if (i > n - window/2 - 2) {
s -= x[i - (w-1)/2] + x[i - (w-3)/2];
w -= 2;
} else {
s += x[i + (w+1)/2] - x[i - (w-1)/2];
}
}
return y;
}")
新基准:
n <- 5
index <- log(seq(10, 200, by = .5))
w <- c(seq(1, n, 2), rep(n, length(index) - n - 1), seq(n, 1, -2))
bench::mark(
fasttapermean(index),
tapermean(index),
zoo::rollapply(index, w, mean)
)
# # A tibble: 3 x 14
# expression min mean median max `itr/sec` mem_alloc n_gc n_itr total_time result memory time gc
# <chr> <bch:tm> <bch:tm> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl> <int> <bch:tm> <list> <list> <list> <list>
# 1 fasttapermean(index) 4.7us 5.94us 5.56us 67.6us 168264. 5.52KB 0 10000 59.4ms <dbl [381]> <Rprofmem [2 x 3]> <bch:tm> <tibble [10,000 x 3]>
# 2 tapermean(index) 53.9us 79.68us 91.08us 405.8us 12550. 37.99KB 3 5951 474.2ms <dbl [381]> <Rprofmem [16 x 3]> <bch:tm> <tibble [5,954 x 3]>
# 3 zoo::rollapply(index, w, mean) 12.8ms 15.42ms 14.31ms 29.2ms 64.9 100.58KB 8 23 354.7ms <dbl [381]> <Rprofmem [44 x 3]> <bch:tm> <tibble [31 x 3]>
但是,如果你关心(极端)精度,你应该使用rollapply
方法,因为 R 的内置mean
算法比朴素的和除方法更准确。
还要注意,rollapply
方法是唯一允许您在需要时使用na.rm = TRUE
的方法。
4
与zoo::rollapply()
类似,您也可以使用gtools::running()
并更改width
参数。但是,有趣的是,@ Andrew Gustar 的功能仍然更快。
require(tidyverse)
require(gtools)
require(zoo)
require(rbenchmark)
index <- rep(log(seq(10,20,by=0.5)),100)
benchmark("rollapply" = {
rollapply(index, c(1, 3, 5, rep(5, 15), 5, 3, 1), mean)
},
"tapermean" = {
tapermean(index)
},
"running" = {
running(index, fun=mean, width=c(1, 3, 5, rep(5, 15), 5, 3, 1),
simplify=TRUE)
},
replications = 1000,
columns = c("test", "replications", "elapsed","user.self",
"sys.self"))
test replications elapsed user.self sys.self
1 rollapply 1000 17.67 17.57 0.01
3 running 1000 32.24 32.23 0.00
2 tapermean 1000 0.14 0.14 0.00
本站系公益性非盈利分享网址,本文来自用户投稿,不代表码文网立场,如若转载,请注明出处
评论列表(4条)