斯坦福核心 NLP频率计数

我正在使用 Stanford CoreNLP 进行情绪分析。我已经检查了 git(Link)上的代码,并希望将其修改为每个评论的情绪频率 (例如,3 正,2 中性,1 负) 并将其打印到 Dataframe 中。我应该如何修改它才能计算每个 sentimentValue 的频率?

我正在使用 Stanford CoreNLP 进行情绪分析。我已经检查了 git(Link)上的代码,并希望将其修改为每个评论的情绪频率 (例如,3 正,2 中性,1 负) 并将其打印到 Dataframe 中。我应该如何修改它才能计算每个 sentimentValue 的频率?

import os
import numpy as np
import pandas as pd
inputFile = 'reg_reviews_03.csv'        # enter original file name that include review text column
outputFile = 'reg_reviews_NLP_03.csv'   # enter oupput file name that will add new sentiment features
# Add empty column columns
df = pd.read_csv(inputFile)
header_list_new = ['numSentence', 'numWords', 'totSentiment', 'avgSentiment', 'Sfreq0','Sfreq1','Sfreq2','Sfreq3','Sfreq4','Sfreq5']
for i, name in enumerate(header_list_new):
    df[name] = 0
from pycorenlp import StanfordCoreNLP
nlp = StanfordCoreNLP('http://localhost:9000')
# Function; Output = # sentence, # words, avg.sentimentValue, sentimentHist
def stanford_sentiment(text_str):
    res = nlp.annotate(text_str,
                   properties={
                       'annotators': 'sentiment',
                       'outputFormat': 'json',
                       'timeout': 40000,
                   })
    numSentence = len(res["sentences"])
    numWords = len(text_str.split())
    
    # data arrangement
    arraySentVal = np.zeros(numSentence)
    for i, s in enumerate(res["sentences"]):
        arraySentVal[i] = int(s["sentimentValue"])
    # sum of sentiment values for all sentences in a text/review
    totSentiment = sum(arraySentVal)
    # avg. of sentiment values for all sentences in a text/review
    avgSentiment = np.mean(arraySentVal)
    # frequency of sentimentValue in a text/review; {1 : Negative, 2 : Neutral, 3 : Positive}
    bins = [0,1,2,3,4,5,6]
    freq = np.histogram(arraySentVal, bins)[0]    # getting freq. only w/o bins
    return(numSentence, numWords, totSentiment, avgSentiment, freq)
dfLength = len(df)
for i in range(dfLength):
    try:
        numSentence, numWords, totSentiment, avgSentiment, freq = stanford_sentiment(df.review[i].replace('\n'," "))
        df.loc[i,'numSentence'] = numSentence
        df.loc[i,'numWords'] = numWords
        df.loc[i,'totSentiment'] = totSentiment
        df.loc[i,'avgSentiment'] = avgSentiment
        df.loc[i,'Sfreq0'] = freq[0]
        df.loc[i,'Sfreq1'] = freq[1]
        df.loc[i,'Sfreq2'] = freq[2]
        df.loc[i,'Sfreq3'] = freq[3]
        df.loc[i,'Sfreq4'] = freq[4]
        df.loc[i,'Sfreq5'] = freq[5]
    except:
        print("error where i =", i)

本站系公益性非盈利分享网址,本文来自用户投稿,不代表码文网立场,如若转载,请注明出处

(583)
在 C++中访问信号处理程序内的main()函数的变量
上一篇
在 C++中访问信号处理程序内的main()函数的变量
下一篇

相关推荐

  • 斯坦福核心 NLP频率计数

    我正在使用 Stanford CoreNLP 进行情绪分析。我已经检查了 git(Link)上的代码,并希望将其修改为每个评论的情绪频率 (例如,3 正,2 中性,1 负) 并将其打印到 Dataframe 中。我应该如何修改它才能计算每个 sentimentValue 的频率?…

    2022-11-21 03:03:52
    0 67 14

发表评论

登录 后才能评论

评论列表(31条)