使用锥形窗口计算运行平均值(tapered mean)

给定一个(虚拟)向量

给定一个(虚拟)向量

index=log(seq(10,20,by=0.5))

我想用居中的窗口和在每个末端都有锥形窗口来计算运行平均值,即第一个条目保持不变,第二个是窗口大小为 3 的平均值,依此类推,直到达到指定的窗口大小。

这里给出的答案:Calculating moving average,似乎都会产生一个较短的向量,在窗口太大的地方切断开始和结束,例如:

ma <- function(x,n=5){filter(x,rep(1/n,n), sides=2)}
ma(index)
Time Series:
Start = 1 
End = 21 
Frequency = 1 
[1]       NA       NA 2.395822 2.440451 2.483165 2.524124 2.563466 2.601315
[9] 2.637779 2.672957 2.706937 2.739798 2.771611 2.802441 2.832347 2.861383
[17] 2.889599 2.917039 2.943746       NA       NA

同样的道理

rollmean(index,5)

来自动物园的包裹

有没有一种快速的方法来实现锥形窗口而不诉诸于编码循环?

8

由于rollapply可能相当慢,因此通常值得编写一个简单的定制函数...

tapermean <- function(x, width=5){
                 taper <- pmin(width,
                               2*(seq_along(x))-1,
                               2*rev(seq_along(x))-1) #set taper pattern
                 lower <- seq_along(x)-(taper-1)/2    #lower index for each mean
                 upper <- lower+taper                 #upper index for each mean
                 x <- c(0, cumsum(x))                 #sum x once
                 return((x[upper]-x[lower])/taper)}   #return means

这比rollapply解决方案快 200 倍...

library(microbenchmark)
index <- log(seq(10,200,by=0.5)) #longer version for testing
w <- c(seq(1,5,2),rep(5,length(index)-5-1),seq(5,1,-2)) #as in Scarabees answer
microbenchmark(tapermean(index),
               rollapply(index,w,mean))
Unit: microseconds
                   expr       min         lq       mean     median        uq       max neval
       tapermean(index)   185.562   193.9405   246.4123   210.6965   284.548   590.197   100
rollapply(index,w,mean) 48213.027 49681.0715 52053.7352 50583.4320 51756.378 97187.538   100

我休息我的案子!

6

zoo::rollapplywidth参数可以是数值向量。

因此,在你的例子中,你可以使用:

rollapply(index, c(1, 3, 5, rep(5, 15), 5, 3, 1), mean)
#  [1] 2.302585 2.350619 2.395822 2.440451 2.483165 2.524124 2.563466 2.601315 2.637779 2.672957 2.706937 2.739798 2.771611 2.802441 2.832347 2.861383
# [17] 2.889599 2.917039 2.943746 2.970195 2.995732

如果n是一个奇数,一般的解决方案是:

w <- c(seq(1, n, 2), rep(n, length(index) - n - 1), seq(n, 1, -2))
rollapply(index, w, mean)

编辑:如果您关心性能,则可以使用自定义 Rcpp 函数:

library(Rcpp)
cppFunction("NumericVector fasttapermean(NumericVector x, const int window = 5) {
  const int n = x.size();
  NumericVector y(n);
  double s = x[0];
  int w = 1;
  for (int i = 0; i < n; i++) {
    y[i] = s/w;
    if (i < window/2) {
      s += x[i + (w+1)/2] + x[i + (w+3)/2];
      w += 2;
    } else if (i > n - window/2 - 2) {
      s -= x[i - (w-1)/2] + x[i - (w-3)/2];
      w -= 2;
    } else {
      s += x[i + (w+1)/2] - x[i - (w-1)/2];
    }
  }
  return y;
}")

新基准:

n <- 5
index <- log(seq(10, 200, by = .5))
w <- c(seq(1, n, 2), rep(n, length(index) - n - 1), seq(n, 1, -2))
bench::mark(
  fasttapermean(index),
  tapermean(index),
  zoo::rollapply(index, w, mean)
)
# # A tibble: 3 x 14
#   expression                          min     mean   median      max `itr/sec` mem_alloc  n_gc n_itr total_time result      memory              time     gc
#   <chr>                          <bch:tm> <bch:tm> <bch:tm> <bch:tm>     <dbl> <bch:byt> <dbl> <int>   <bch:tm> <list>      <list>              <list>   <list>
# 1 fasttapermean(index)              4.7us   5.94us   5.56us   67.6us  168264.     5.52KB     0 10000     59.4ms <dbl [381]> <Rprofmem [2 x 3]>  <bch:tm> <tibble [10,000 x 3]>
# 2 tapermean(index)                 53.9us  79.68us  91.08us  405.8us   12550.    37.99KB     3  5951    474.2ms <dbl [381]> <Rprofmem [16 x 3]> <bch:tm> <tibble [5,954 x 3]>
# 3 zoo::rollapply(index, w, mean)   12.8ms  15.42ms  14.31ms   29.2ms      64.9  100.58KB     8    23    354.7ms <dbl [381]> <Rprofmem [44 x 3]> <bch:tm> <tibble [31 x 3]>

但是,如果你关心(极端)精度,你应该使用rollapply方法,因为 R 的内置mean算法比朴素的和除方法更准确。

还要注意,rollapply方法是唯一允许您在需要时使用na.rm = TRUE的方法。

4

zoo::rollapply()类似,您也可以使用gtools::running()并更改width参数。但是,有趣的是,@ Andrew Gustar 的功能仍然更快。

require(tidyverse)
require(gtools)
require(zoo)
require(rbenchmark)
index <- rep(log(seq(10,20,by=0.5)),100)
benchmark("rollapply" = {
  rollapply(index, c(1, 3, 5, rep(5, 15), 5, 3, 1), mean)
},
"tapermean" = {
  tapermean(index)
},
"running" = {
  running(index, fun=mean, width=c(1, 3, 5, rep(5, 15), 5, 3, 1),
          simplify=TRUE) 
},
replications = 1000,
columns = c("test", "replications", "elapsed","user.self",
            "sys.self"))
       test replications elapsed user.self sys.self
1 rollapply         1000   17.67     17.57     0.01
3   running         1000   32.24     32.23     0.00
2 tapermean         1000    0.14      0.14     0.00

本站系公益性非盈利分享网址,本文来自用户投稿,不代表码文网立场,如若转载,请注明出处

(99)
为什么当我花费向量计算时 hessian是 0
上一篇
具有121子状态的HTTP500错误表示什么
下一篇

相关推荐

发表评论

登录 后才能评论

评论列表(74条)